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Introduction
A graph is (relatively formally) defined as a mathematical object consisting of a set of
both points, known as the vertices of the graph, and the (possibly curved) lines connecting
them, known as the edges of that graph. When we consider a graph, we usually do not
care about the exact layout of the vertices and the edges, in the sense that their precise
location doesn’t matter; the only fundamental features of a graph are which edges and which
vertices it contains. That is to say, we may rearrange a graph G by moving the vertices
and redrawing the edges so that the same vertices are connected by the same edges, and if
we do so we merely obtain a different drawing D of the graph G.
A drawing is termed ‘nice’ if it satisfies three properties: no edge ever crosses itself, no two
edges adjacent to the same vertex cross each other, and no two edges cross more than once,
and every graph possesses a nice drawing. We’re interested in drawing a graph with the
minimum number of edges crossing. For example, observe that the graph which consists
of five vertices and one edge between every pair of vertices, which we may call K5 or the
complete graph of five vertices, cannot be redrawn so that no pair of edges cross each other.
However, we may draw it so that only one pair of edges cross. (Figure 1) We define a
quantity called the crossing number, defined for any given graph, which is the minimum
number of crossings with which the graph may be drawn. Thus we may say that the crossing
number of K5 is equal to 1, or Cr(K5) = 1. The crossing number for any finite graph is a
well-defined value, which can in theory be calculated, a task made easier by the fact that
any drawing of a graph with the fewest number of crossings is always nice.
We chose to investigate a specific question in the field: given an arbitrary graph with
crossing number k, what is the minimum crossing number of its cone? Here, the ‘cone’ of
a graph G is the graph C formed by the addition of a new vertex, called the ‘apex vertex’
or a, and new edges from a to every other vertex in G. (See Figure 2 for an example of a
graph’s cone.) Previous work has resolved this question only for very small values of k, up
to at most k = 5. We therefore investigated the behavior of cones of graphs with k = 6
and k = 7 to build upon this previous work.

Figure 1: The complete graph K5, drawn both conventionally and with only one crossing

Figure 2: A graph and its cone

Methods
Recalling that we defined the graph G so that Cr(G) = k, we observe that Cr(C) ≥ k.
We therefore may introduce a nonnegative integer t, such that Cr(C) = k + t. Our task
then falls to finding the minimum value that t may take, as a function f (k) of k. This may
be accomplished by two methods in concert:
1. We may work towards finding a lower bound for f (k). Finding lower bounds for f (k)

generally works by demonstrating that if t were lower than some value, this would lead
to being able to redraw G with fewer than k crossings, and therefore deriving a
contradiction. Since f (k) is the minimum value t is permitted to take, a lower bound
for t is a lower bound for f (k).

2. We may work towards finding an upper bound for f (k). As f (k) is the minimum for t,
an example of a graph which results in a specific t for a given k gives an upper bound
on f (k). Previous work [1] on this topic has given some simple examples of graphs
with crossing numbers ranging from 1 to 5, with the minimum number of crossings in
their cones. These examples are found in Figure 3. The case of k = 0 is trivial.

Figure 3: From left to right: k = 1, 2, 3, 4, 5. Colored for aesthetics.

Results
We considered the cases for both k = 6 and k = 7. While the proof remains unfinished, we
did find two promising candidate graphs, and probable paths to a complete proof for each
candidate graph. One particularly important lemma involves the ‘nonplanar neighbors’,
which are the set of vertices (drawn in grey in the figures below) not found on the outside
of the graph. If we say, for a graph G, that D is the drawing of G which appears as part
of its cone C when C is drawn with as few crossings as possible, then the lemma says that
D must have at most t nonplanar neighbors. This lemma helped enumerate the possible
categories of graphs, and provide limits on what they could look like.
For the case where k = 6, we were able to find a graph that could be drawn with six
crossings that led to a cone which could be drawn with only 11. In this case, it would
suffice to prove that the crossing number of the graph is 6.

Figure 4: The candidate graph for k = 6.

For the case where k = 7, we were able to find a graph that could be drawn with 7 crossings,
whose cone could be drawn with 13. In this case, it would suffice to show that the graph’s
crossing number is 7, and that a graph with crossing number 7 cannot have a cone with
only 5 more crossings.

Figure 5: The candidate graph for k = 7.

Very conveniently, in both these cases, just as in the cases for k = 1, 2, 3, 4, 5, there exists
an optimal drawing for G which is also part of the optimal drawing for C, so we don’t need
to do any explicit redrawing during the course of the proof.

Motivations and Context
The origins of this question lies in the intersection of the study of a quantity known as the
chromatic number and the crossing number, for a given graph. The general relation
between these is given by the Albertson Conjecture, for any arbitrary graph. Therefore, a
better understanding of the relation between the crossing number of a graph and of its
cone helps to understand and shed light on the Albertson Conjecture, which itself gives us
more tools with which we might understand the crossing number or the chromatic number
of an arbitrary graph - questions we do not have many tools to deal with, at the moment.
And such questions may be important and relevant in any topic that deals with
two-dimensional arrangement of things that we would like to cross as little as possible or
to categorize with as few categories as possible, such as the construction of circuit boards.
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