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F103A Mutant Free Energy Calculations

F103H Mutant
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Energy Component 10-30ns 30-50ns 10-30ns 30-50ns

Van der Waals -211.01 -221.05 -195.38 -195.67
Electrostatic -556.66 -608.08 -407.44 -473.36
Electrostatic -
Solvation (PB) 634.34 687.19 493.87 564.51

Non Polar Cavity 
Formation -147.59 -155.41 -134.42 -137.91

Non Polar Dispersion 286.39 296.42 262.05 267.45
Total Binding Free 
Energy 5.465 -0.936 18.676 26.023
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Active Site Residue RMSF Difference (Mutant - WT)
F103H F103A

His12 -1.24 -0.34
His61 -1.79 -0.81

His127 -4.17 -2.57
His195 -1.32 -0.55
Leu197 -1.06 -0.22
Glu242 -0.44 -0.17
Ser269 -0.95 -0.03
Asn270 -1.00 -0.23
Thr271 -1.68 -0.47

• F103A previously observed to not co-
purify in expression screen
• RMSD histogram shows less deviation in 

beta subunit than alpha
• Similar patterns to WT
• Additional peak at lower RMSD for 

beta subunit
• RMSF of F103A smaller in beta subunit
• Alpha mutation has global effects 

• More stable than WT at residues in active 
site and  allosteric pocket
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• Mutation also caused changes in cross correlational interactions across 
the entire enzyme (data not shown)

• These data must be analyzed with experimental data to determine which 
interactions might be most important for maintaining dimer stability

• F103H showed similar patterns to F103A
• Less flexible in beta subunit at comparable residue positions
• Many peaks seem to correspond to active site residues or are within 

proximity of the site (data for both mutants displayed in table)
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Wild Type
• Generated 50 ns trajectory for WT LigAB
• Explicit solvent system and neutralized with Na+

• Root Mean Squared Deviation (RMSD) shows deviation of 
the model from starting position over time
• Relatively small values indicated accurate model

• Root Mean Squared Fluctuation (RMSF) used to determine 
the flexibility at each residue position

0 10 20 30 40 50

0
2

4
6

WT RMSD

Time (ns)

R
M

SD
 (A

)

0 100 200 300 400

0
1

2
3

4
5

6
7

WT RMSF

Residue Position

R
M

SF
 (A

)

• Lignin, a carbon compound in cell walls, is underutilized
• LigAB catalyzes ring cleaving in lignin degradation pathway

• LigAB is a homodimer of heterodimers
• Both allosteric pocket and active site are proximal to dimer 

interface; dimer stability likely influences enzyme activity
• Phe103α residue common to both of these sites

• Previously, some Phe103α mutants did not co-purify
• Absence of a large, nonpolar residue disrupts interface

• Using GROMACS molecular dynamics package, stability of 
several Phe103α mutants computationally determined

• Calculated binding free energy of mutants with AMBER

• Free energy calculations performed using MMPBSA function
• Approximated dimer as receptor-ligand complex

• Binding free energy calculated by combining gas phase 
contributions with solvation free energy

• Used an implicit solvent system; Poisson Boltzmann (PB)
• Represent solvent as continuous medium
• Describes electrostatic environment in solvent with ions

• Total binding free energy of F103A is significantly less 
stable than WT; not within range of standard deviations
• Confirms original hypothesis

• Electrostatic interactions overall weaker in F103A
• Both attractive and repulsive forces
• Might implicate water in stability of the dimer interface or 

disruption of the stabilizing interactions

• Trajectories of at least 50 ns will be generated for all 
previously studied Phe103α mutants

• Experimental data will be collected for each mutant
• Aerobic purification and corresponding SDS-PAGE gels 
• Example below shows F103S; beta subunit (32 kDa) 

elutes without the alpha subunit (18 kDa)
• Resulting gels will be quantified to determine co-

purification of respective mutants 
• Gives insight on which interactions prevent dimer formation
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