
Figure 4. Two possible layouts for poster (caption: 32 points, bold). 

Introduction Results
Embedding Performance for Random Node 
Samples, and Graph Subsets 

The MDS algorithm is computationally expensive, and city road networks are large. Manhattan has 
only around four thousand nodes, but cities such as London have over a hundred thousand. Thus it is 
helpful to use a subset of the data to create the dissimilarity matrix inputted to the MDS algorithm. In 
this experiment two such methods of sub setting the data were examined. In the first method, a random 
sample of 1000 nodes was taken. The shortest paths through the in the entire graph were found for the 
sampled nodes to create the distance matrix. In the second method, one random node was selected from 
the graph. A subgraph was created of all the nodes within a bounding box of a set distance, such that the 
graph had on average 1000 nodes. The dissimilarity matrix was created for all the nodes in the 
subgraph using the shortest paths within the subgraph. Each method has it’s pros and cons. Computing 
the matrix is faster for the subgraph method, since shortest paths do not have to be found through the 
entire graph. On the other hand, the sample is more representative of the whole network.

Figure 2.(a) Shows the results of an embedding of the random sample shown in Figure 1(b), and Figure 2(b). 
shows the results of the subgraph shown in Figure 1(c). In both embeddings, the general shape of the network, 
and features such as Central Park can be observed. One can observe that orientation is meaningless. 

An Exploration of the Geometry of Road Networks Through 
Embeddings in the Euclidian Plane 

Further Exploration

Fig 1 (a). The Manhattan Road Network                  (b). A Random Sample of 1000 Nodes.      (c). A Subgraph of Approximately 1000 Nodes 

v Half of the global population already lives in cities, and by 
2050 two-thirds of the world’s people are expected to live in 
urban areas.

vThe speed and scale of urbanization brings tremendous 
challenges in developing sustainable cities.

vIn this project, we seek to understand the road networks of 
cities through a geometric lens. Specifically, we explore the 
dimensionality of urban road networks by embedding them in 
the Euclidean plane.

vRoad networks are embedded in the Euclidian Plane through 
Multidimensional Scaling (MDS)

v“The general aim of multidimensional scaling is to find a 
configuration of points in a space, usually Euclidean, where 
each point represents one of the objects or individuals, and 
the distances between pairs of points in the configuration 
match as well as possible the original dissimilarities between 
the pairs of objects or individuals.”(Cox)

vWe embed the nodes of the City networks with dissimilarities 
between nodes as the shortest path through the road network

vEmbeddings are evaluated by two metrics, Stress and 
Distortion

v
v Distortion=1-R2

vStress and distortion are both on a scale from 0-1 with lower 
values indicating better embeddings

vApplications of this research can be used to analyze traffic 
patterns, as certain geometries can lead to certain congestion 
patterns. 

Research Questions

Embedding Performance of Various Cities, 
as Networks Grow

Shown above are the portions of the eight 
cities studied in the experiment.  Starting from 
the center of the city, the networks were grown 
in intervals of 100 meters until they surpassed 
5000 nodes. An embedding was computed five 
times for each network as there is a 
randomness component to MDS. Due to 
computational limits the most nodes we could 
analyze was 5000 nodes. For some cities, such 
as Buenos Aires, this was enough to capture a 
significant portion of the city. For other cities, 
such as London, it was only a small portion. 
This is demonstrated to the right in figure. The 
whole city is shown, with green being the 
network studied, and red, the rest of the city.
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As observed in the graph, stress and distortion behave very similarly for both methods. The sample method 
embedded more effectively with a lower mean stress and distortion values as well as a much lower variance. 
ANOVA showed a difference a significant lower mean for both stress and distortion for the random sample method, 
with both p values less than 2*10^-16.

Method Mean Distortion Distortion SD Mean Stress Stress SD

Sample .0419 .000980 . 00597 .00330

Subset .0846 .0164 . 0329 .0219
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Recall the formula for stress:

The denominator is constant for each individual embedding. Thus, the algorithm only needs to 
minimize the numerator. This value is sometimes called the raw stress. The average value for raw 
stress is less for the subset method. However, the sum of distances squared is far greater for the 
random sample as it includes nodes from all around the city, not just nodes constrained to a small 
radius. This helps explain the differences in performance. The subset method is unable to have low 
enough raw stress to compensate for a smaller sum of distances squared. 

v Growing networks by taking an increasingly larger random 
sample
v An obvious continuation of the experiment is to grow the 

network through increasingly larger random samples of 
nodes as opposed to the method of expanding the network 
from the center. 

v For cities such as Buenos Aires or Boston where the 
experiment was able to capture a large portion of nodes, it 
would be hypothesized this method would converge to 
similar results

v For cities such as London, in which the experiment only 
captured a small portion of nodes, perhaps this would show 
a better picture of the network as a whole

v Furthermore, the pattern as the sample size grows could be 
analyzed for potentially interesting results

v Using travel times for the dissimilarity between nodes
v In the experiment, the dissimilarity between nodes was 

given by the length of the shortest path through the 
network

v This is a very naïve way of measuring dissimilarity; two 
nodes a mile apart through downtown traffic and two nodes 
a mile apart on a highway should not have the same 
dissimilarity

v The experiment could be repeated with dissimilarity equal 
to the time it takes to get from one node to another  

v Can city road networks be embedded effectively in the 
two-dimensional Euclidian plane?

v How do small connected portions of larger city networks 
embed in comparison to random samples of nodes from the 
larger city network?

v What patterns can be observed in embeddings as the size 
of the network grows? 

The shape of the stress and distortion plots were very similar. This is not surprising as they are both 
metrics of how effective an embedding is. Both stress and distortion showed a trend of lower values as 
the number of nodes increased. This shows that embeddings are getting more effective as the network 
grows. For London and Buenos Aires the pattern is clear. For Manhattan, Sacramento, and Dubai, a 
general negative trend is observed, but with more variation. For Manhattan this is not surprising given 
it’s structure. As seen in Figure 9, the city graph expanded to include parts of New Jersey and Brooklyn 
across the river, connected only by one bridge. Boston and Nairobi showed the least clear patterns. 
Perhaps for Boston it was the harbor that accounted for this. For Nairobi, perhaps the lack of density 
was to blame.

Figure 2( a). Embedding Results for Random Sample                                                             (b). Embedding Results for a Subset by Radius

Figure 3 (a                                                                                                                  (b).

Figure 4. Embedding Results
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Figure 7. Portion of Network Studied for Buenos Aires and London 
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