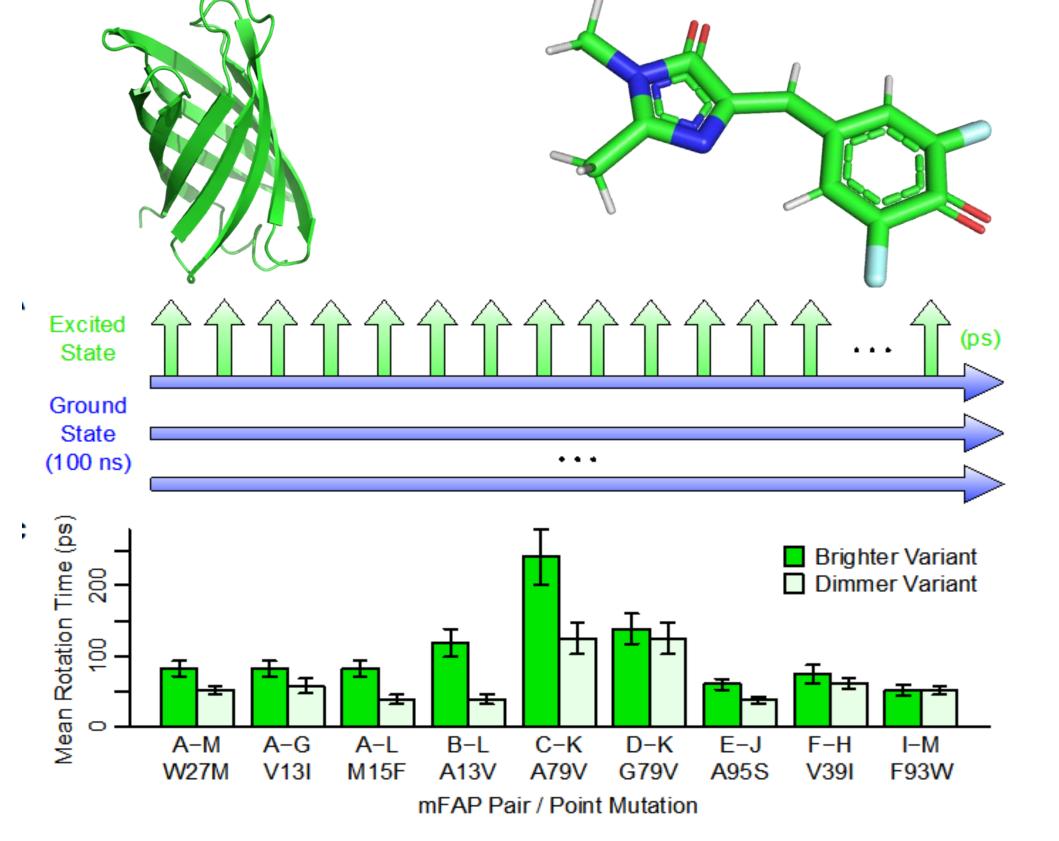
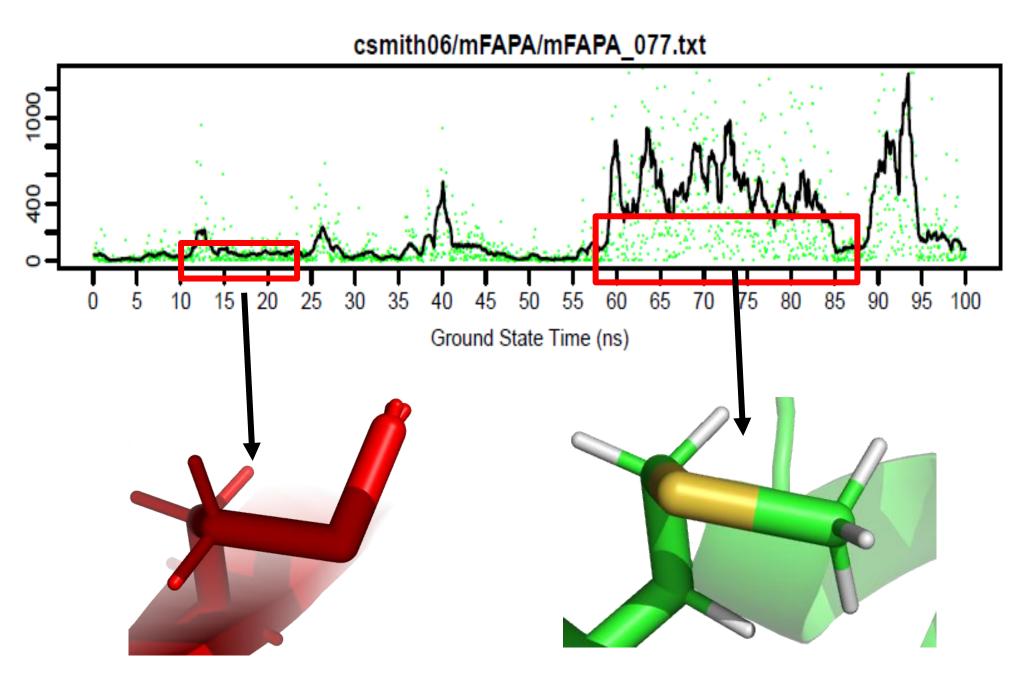


 \bullet


Structural Features in Mini-Fluorescence Activating Proteins affecting Chromophore Bond Rotation Times Justin Nguyen, Colleen Carrigan, Emma Hostetter, Colin Smith

Department of Chemistry, Quantitative Analysis Center Wesleyan University, Middletown, CT 06459

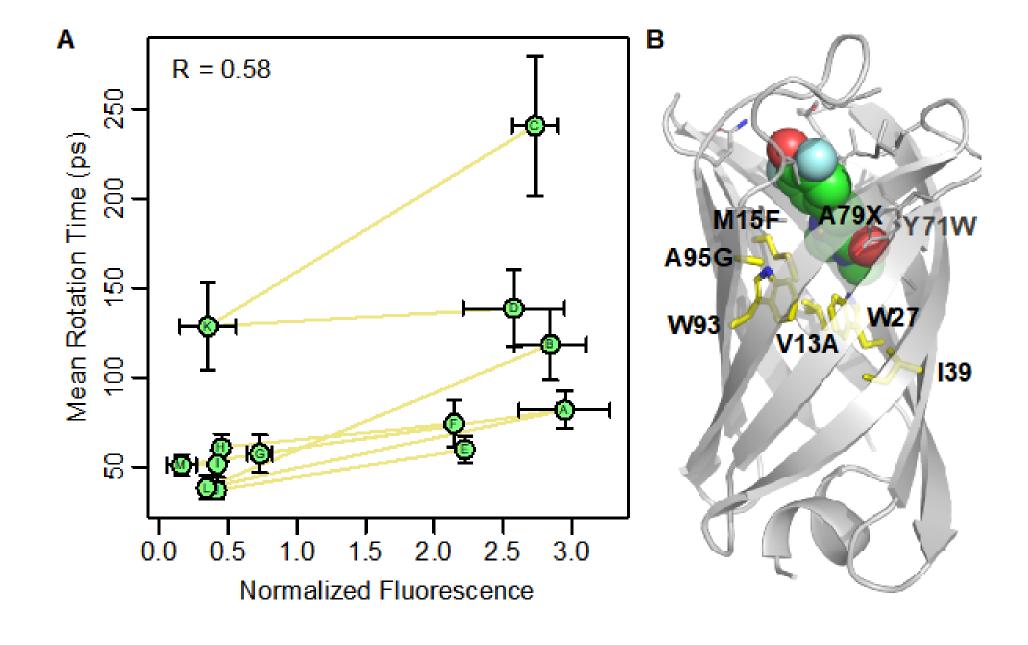
I	ntroduction	Central Question	Results									
 Designing proteins from scratch has been on the forefront of structural biology and can lead to key designs in enzymes within industrial, environmental 		 Are there structural features that affect chromophore bond rotation times? 	ime (ps) 400 600			or Each 100 ns Simulation or All 20 100 ns Simulations						
) successfully engineered the first de	mFAPA MD Simulations	200 Ti	Ē								
novo designed fluorescence-activating β-barrel (mFAP) which binds to a small, green fluorescent-derivative		 Generating hypotheses of what significant 	°									


- known as 3,5-difluoro-4-hydroxybenzylidene imidazolinone(DFHBI).
- This protein-ligand experiment elucidates many general principles in designing a singular β -sheet protein as well as the protocol in creating a functional ensemble.

• Throughout the 100ns ground state simulation, an excited state simulation branched off every

- features affected chromophore bond rotation times were done through visual analysis in Pymol.
- There are 20 simulations to observe
- Each simulation varies by slight change DFHBI pose.

Notable Structural Features



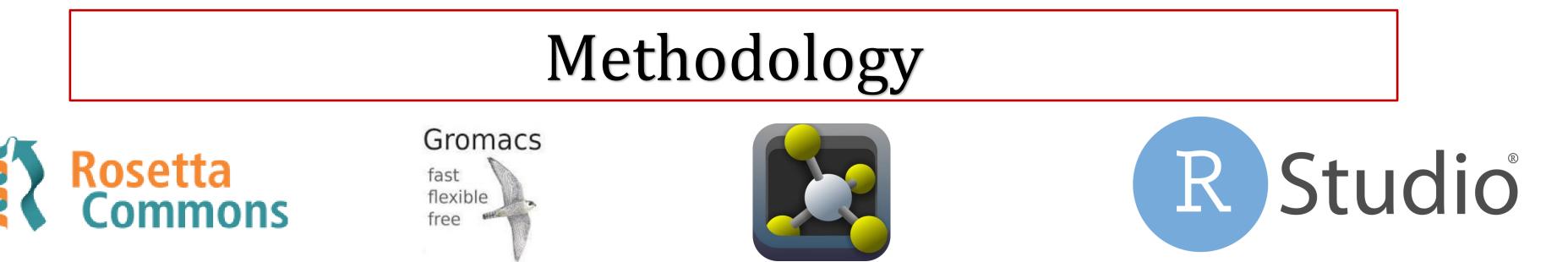
- BIASED UNBIASED 1 UNBIASED 2 mFAPA Variants
- Met-15 was restrained in a g+,g+,g+ rotamer \bullet conformation throughout the entire ground state simulation.
- Most of the simulations experienced an increase in lacksquarechromophore bond rotation times compared to unbiased 1 and unbiased 2.

Conclusion

- It appears biasing Methionine 15 into a rotameric state of a g+,g+,g+ increased the mean rotation time by almost double compared to other mFAPA ensembles.
- Although the bias simulation results indicates an increase in chromophore bond rotation time, the mechanisms in which influencing the rotamer into that state is unknown.

50ps, creating 2000 snapshots per simulation

- Initial observations were done by looking at simulations with higher bond rotation times compared to others.
- Methionine 15 was found to be interesting in simulation 077 where it looked like it correlated with higher mean rotation times whenever it was in a g+,g+,g+ rotameric state.


Future Directions

- Run additional bias simulations to find significant changes in chromophore bond rotation times
- Perform a partial least squares regression to find the linear mode that shows the highest co-variance of bond rotation times
- Validate the bias simulation by creating possible mutations within mFAP models that can lead to the rotameric state of Met-15 in g+,g+,g+
- Re-run the dihedral restraint simulation using Rosetta constraint file and compare the results with the Gromacs only biased simulation.

Normalized																																												
Fluorescence			5	10	د	15		20	2	25	3/	(35	t.	40		45		50		55	f	60	1	65		70		75		80	8	35	90)	95		100		105	1	(10	115	Į.
2.95±0.33	mFAP-A	S R A	AQLL	РGT	WQV:	ТМТ	NEC) G Q T	[SQ	<u>a</u> Qw	H F C	{	δΡΥ	TMD	I V A	QG	TIS	DGF	(PI)	V G Y	' <mark>G K</mark> /	ΑTV	K T I	P D T	LD/	I D I	I T Y !	PSI	GN	I <mark>K</mark> A	QGC	1 T I	M D S	PTC	ί Ε <mark>Κ</mark>)	NDA	TTK	GEN	D F !	HGRI	T G	TLQ	RQE	
0.73±0.09	mFAP-G																																											
0.34 ± 0.04			AQLL																																-									
0.16±0.11	mFAP-M	SRA	AQLL	РGТ	WQV.	ТМТ	NED) G Q T	rsar	<u>a Q M</u>	H F C	/ P R ?	3 P Y	TMD	IV	V Q G .	TIS	DGR	(P)	V G Y	GK/	ΑΤΥ	KTF	PDT	LDI	DI	. T Y /	PSL	GN	I <mark>K</mark> A	QGC	I T	MDS	PTQ	IFKV	NDA	ттк	GEN	DF	HGRL	. T G	TLQ	RQE	
	540 D			D O T																																								
	mFAP-B																																											
0.34±0.04	mFAP-L	SHA	AQLL	PGI	WQV	IFI	NED	Jaul	, sui	<u>a</u> q w	нгч	PHS	5 P Y	IMD	IVA	rug	115	ран	(PT)	VGY	GKZ	AIV	KII	PDI			1 1 1	PSL	GN		.uuu		MDS	PIU	I H K V	NDA	IIK	GEN	DF	нанц	. 1 G	I L Q	RUE	
2.73+0.17	mFAP-C			РОТ	wow	тет	NEC	1007	r sol	aow	HEC		a p v	тмр	LV.	0.0	TIS	DOF	PI	VOV	ok.	ΑТУ	кт	рпт	1 DZ	I N I	t Tw	p e l	GN	1 1 10	oec	ιт		РТС		W D G	тти	GEN	D E '	наві	TO	TIO	POF	
	mFAP-K																																											
<u> vivyiyi</u> i	IIIFAF -N	ONA		FGI	W SA		NED		341	3 ~ 44	nrv) F T		1 V P	, a a	110	Dan	1 F. I	var	GIN 7	214	NI	FUI			1 1 1 1				la a a		M D O	F I W				OL N		aant		I L GI	n w E	
2.58±0.37	mFAP-D	SRA	AQLL	РСТ	WQ A	TET	NEC	JGQT	r sq/	aow	H E C	2 P R /	S P Y	TMD	ΙVΑ	AQG'	TIS	DGF	(PI)	V G Y	GKI	ΑТΥ	K T /	PDT	LDZ		LTW!	ΡSL	GN	IKG	logc	ίт	MDS	РТС	EK)	W D G	ТТИ	GEN	DE	HGRI	TG	TLQ	RQE	
	mFAP-K																																											
******		<u> </u>				/				<u> </u>			· · ·															. 77	1												1			
2.22+0.05	mFAP-E	SRA	AQLL	PGT	WQV [*]	ТМТ	NEC	JGQT	(SQ)	<u>a q m</u>	H F C	∤ P R ∜	3 P Y	TMD	ΙVΑ	AQG'	TIS	DGP	(PI)	V G Y	' <mark>G K</mark> /	ΑTV	KTI	P D T	LDN	VD I	ι Τ Υ /	PSL	GN/	I K A	QGC	I T	MDS	PTC	ℓ Ε Κ /	F D A	TTK	GAG	N F 1	TGRI	TG	TLQ	RQE	
0.42+0.02	mFAP-J	S R A	AQLL	P G T	WQ V	ТМТ	NEC) G Q T	(SQ	<u>a</u> QM	H F C	ℓ Ρ <mark>Β</mark> ₹	3 P Y	TMD	ΤVΑ	QG	TIS	DGF	(PI)	V G Y	' <mark>G K</mark> /	ΑTV	ΚΤΓ	P D T	L D ۱	VDI	i T Y !	PSL	GN	I <mark>K</mark> A	QGC	1 T I	MDS	PTO	ℓ	F D S	TTK	GAG	NF	TGRI	TG	TLQ	RQE	

References and Acknowledgement

mFAP-F SRAAQLLPGTWQVTMTNEDGQTSQGQWHFQPRSPYTMDVVAQGTISDGRPIVGYGKATVKTPDTLDVDITYPSLGNIKAQGQITMDSPTQFKWDATTKGAGNFTGRLTGTLQRQE OLL PGTWONTMINEDGOISOGOWHEOPRSPYIMDIVAOGIISDGRPIVGYGKATVKIPDILDVDIIYPSI

- The mFAPA-Met15 biased simulation was done using Gromacs. The process utilized 200 different DFHBI poses followed by the first repacking and minimizing mFAP models. After the minimization, the mFAP model was repacked again. When running the ground state simulation, a dihedral restraint itp file was included to ensure it stays at the ideal chi angle.
- Running the excited state simulations were done on the High-Performance Computing Cluster (HPCC) at Wesleyan.
- Data visualization was primarily done in R/Rstudio where additional hypotheses were generated.
- Gromacs 2019 was also used in generating spliced trajectory files, average atomic fluctuation pdbs and for the Met-15 dihedral restraint.
- Pymol v2.4 was used to primarily observe the 100ns MD simulations

Dou, J., Vorobieva, A.A., Sheffler, W. *et al.* De novo design of a fluorescence-activating β -barrel. *Nature* **561**, 485–491 (2018). https://doi.org/10.1038/s41586-018-0509-0

Hostetter, E., Poon, I., Keys, J., Nite, J., Molecular Modeling and Design Class, Hoyos, C. J., Smith, C. A. Prediction of Isomerization/Quenching in **Designed MiniFluorescence Activating Proteins.** In Preparation

Thank you to the QAC Apprenticeship for the funding and supporting! Thank you to Henk Meij for maintaining the HPCC. Lastly, a huge thank you to Colleen Carrigan, Professor Colin Smith, Josh Dudley, Oliver Cho and Haley Brumberger for your support!